\(\int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [125]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {7 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

7/4*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)-arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec
(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)-1/4*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/2*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec
(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3908, 4107, 4005, 3859, 209, 3880} \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {7 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sin (c+d x)}{4 d \sqrt {a \sec (c+d x)+a}}+\frac {\sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[Cos[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(7*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*Sqrt[a]*d) - (Sqrt[2]*ArcTan[(Sqrt[a]*Tan[c + d
*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) - Sin[c + d*x]/(4*d*Sqrt[a + a*Sec[c + d*x]]) + (Cos[c +
 d*x]*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3908

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cot[e +
 f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[1/(2*b*d*n), Int[(d*Csc[e + f*x])^(n + 1)
*((a + b*(2*n + 1)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b
^2, 0] && LtQ[n, 0] && IntegerQ[2*n]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4107

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {\cos (c+d x) (a-3 a \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {\sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {-\frac {7 a^2}{2}+\frac {1}{2} a^2 \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a^2} \\ & = -\frac {\sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}+\frac {7 \int \sqrt {a+a \sec (c+d x)} \, dx}{8 a}-\int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = -\frac {\sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}-\frac {7 \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {2 \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {7 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.80 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (7 \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )-4 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )+\cos (c+d x) (-1+2 \cos (c+d x)) \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[Cos[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((7*ArcTanh[Sqrt[1 - Sec[c + d*x]]] - 4*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + Cos[c + d*x]*(-1 + 2
*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(342\) vs. \(2(122)=244\).

Time = 25.80 (sec) , antiderivative size = 343, normalized size of antiderivative = 2.33

method result size
default \(-\frac {\left (4 \sqrt {2}\, \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+4 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}\right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-7 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )-2 \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )-7 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+\cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d a \left (\cos \left (d x +c \right )+1\right )}\) \(343\)

[In]

int(cos(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d/a*(4*2^(1/2)*ln(csc(d*x+c)-cot(d*x+c)+(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2))*(-co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+4*ln(csc(d*x+c)-cot(d*x+c)+(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc
(d*x+c)^2-1)^(1/2))*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-7*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(si
n(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-2*cos(d*x+c)^2*sin(d*x+c)-7*(-cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+cos(d*x+c)*sin(d
*x+c))*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 446, normalized size of antiderivative = 3.03 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {4 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 7 \, \sqrt {-a} {\left (\cos \left (d x + c\right ) + 1\right )} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {7 \, \sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - \frac {4 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{4 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \]

[In]

integrate(cos(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/8*(4*sqrt(2)*(a*cos(d*x + c) + a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1
/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))
- 7*sqrt(-a)*(cos(d*x + c) + 1)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*c
os(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(2*cos(d*x + c)^2 - cos(d*x + c))*sqrt(
(a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), -1/4*(7*sqrt(a)*(cos(d*x + c) + 1)*
arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (2*cos(d*x + c)^2 - cos(
d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - 4*sqrt(2)*(a*cos(d*x + c) + a)*arctan(sqrt(2)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d
)]

Sympy [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate(cos(d*x+c)**2/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**2/sqrt(a*(sec(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2/sqrt(a*sec(d*x + c) + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 423 vs. \(2 (122) = 244\).

Time = 1.01 (sec) , antiderivative size = 423, normalized size of antiderivative = 2.88 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} {\left (\frac {7 \, \sqrt {2} \sqrt {-a} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} - \frac {8 \, \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a}} - \frac {8 \, {\left (17 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} \sqrt {-a} - 57 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} \sqrt {-a} a + 19 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} \sqrt {-a} a^{2} - 3 \, \sqrt {-a} a^{3}\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{2}}\right )}}{16 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \]

[In]

integrate(cos(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/16*sqrt(2)*(7*sqrt(2)*sqrt(-a)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2
+ 4*sqrt(2)*abs(a) - 6*a))/abs(a) - 8*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)
)^2)/sqrt(-a) - 8*(17*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*sqrt(-a) - 57*(s
qrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*sqrt(-a)*a + 19*(sqrt(-a)*tan(1/2*d*x +
1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(-a)*a^2 - 3*sqrt(-a)*a^3)/((sqrt(-a)*tan(1/2*d*x + 1/2*c)
 - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2
+ a))^2*a + a^2)^2)/(d*sgn(cos(d*x + c)))

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(cos(c + d*x)^2/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^2/(a + a/cos(c + d*x))^(1/2), x)